Copied to
clipboard

G = C42.Dic3order 192 = 26·3

2nd non-split extension by C42 of Dic3 acting via Dic3/C3=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.2Dic3, (C4×C12).2C4, (C6×D4).2C4, (C2×C12).5D4, (C2×Q8).27D6, (C2×D4).2Dic3, C4.4D4.3S3, (C6×Q8).3C22, C12.10D42C2, C6.24(C23⋊C4), C32(C42.C4), C2.9(C23.7D6), C22.15(C6.D4), (C2×C12).9(C2×C4), (C2×C4).7(C3⋊D4), (C2×C4).2(C2×Dic3), (C3×C4.4D4).1C2, (C2×C6).100(C22⋊C4), SmallGroup(192,101)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C42.Dic3
C1C3C6C2×C6C2×C12C6×Q8C12.10D4 — C42.Dic3
C3C6C2×C6C2×C12 — C42.Dic3
C1C2C22C2×Q8C4.4D4

Generators and relations for C42.Dic3
 G = < a,b,c,d | a4=b4=1, c6=b2, d2=b2c3, ab=ba, cac-1=a-1b2, dad-1=a-1b-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c5 >

Subgroups: 176 in 64 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C12, C2×C6, C2×C6, C42, C22⋊C4, M4(2), C2×D4, C2×Q8, C3⋊C8, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C4.10D4, C4.4D4, C4.Dic3, C4×C12, C3×C22⋊C4, C6×D4, C6×Q8, C42.C4, C12.10D4, C3×C4.4D4, C42.Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, C2×Dic3, C3⋊D4, C23⋊C4, C6.D4, C42.C4, C23.7D6, C42.Dic3

Character table of C42.Dic3

 class 12A2B2C34A4B4C4D4E6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F12G12H
 size 1128244444222882424242444444488
ρ1111111111111111111111111111    trivial
ρ2111-11-111-11111-1-1-11-11-11-1-11-111    linear of order 2
ρ3111111111111111-1-1-1-111111111    linear of order 2
ρ4111-11-111-11111-1-11-11-1-11-1-11-111    linear of order 2
ρ5111-111-111-1111-1-1-iii-i111111-1-1    linear of order 4
ρ611111-1-11-1-111111ii-i-i-11-1-11-1-1-1    linear of order 4
ρ7111-111-111-1111-1-1i-i-ii111111-1-1    linear of order 4
ρ811111-1-11-1-111111-i-iii-11-1-11-1-1-1    linear of order 4
ρ92220202-20-22220000000-200-202-2    orthogonal lifted from D4
ρ10222020-2-2022220000000-200-20-22    orthogonal lifted from D4
ρ11222-2-1-222-22-1-1-11100001-111-11-1-1    orthogonal lifted from D6
ρ122222-122222-1-1-1-1-10000-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ132222-1-2-22-2-2-1-1-1-1-100001-111-1111    symplectic lifted from Dic3, Schur index 2
ρ14222-2-12-222-2-1-1-1110000-1-1-1-1-1-111    symplectic lifted from Dic3, Schur index 2
ρ152220-102-20-2-1-1-1--3-30000--31-3--31-3-11    complex lifted from C3⋊D4
ρ162220-10-2-202-1-1-1--3-30000-31--3-31--31-1    complex lifted from C3⋊D4
ρ172220-10-2-202-1-1-1-3--30000--31-3--31-31-1    complex lifted from C3⋊D4
ρ182220-102-20-2-1-1-1-3--30000-31--3-31--3-11    complex lifted from C3⋊D4
ρ1944-404000004-4-400000000000000    orthogonal lifted from C23⋊C4
ρ2044-40-200000-2220000000-2-3002-3000    complex lifted from C23.7D6
ρ2144-40-200000-22200000002-300-2-3000    complex lifted from C23.7D6
ρ224-40042i00-2i0-400000000-2i02i2i0-2i00    complex lifted from C42.C4
ρ234-4004-2i002i0-4000000002i0-2i-2i02i00    complex lifted from C42.C4
ρ244-400-2-2i002i022-3-2-30000004ζ32043ζ343ζ3204ζ300    complex faithful
ρ254-400-22i00-2i022-3-2-300000043ζ3204ζ34ζ32043ζ300    complex faithful
ρ264-400-2-2i002i02-2-32-30000004ζ3043ζ3243ζ304ζ3200    complex faithful
ρ274-400-22i00-2i02-2-32-300000043ζ304ζ324ζ3043ζ3200    complex faithful

Smallest permutation representation of C42.Dic3
On 48 points
Generators in S48
(1 10 7 4)(2 11 8 5)(3 12 9 6)(13 43)(14 38)(15 45)(16 40)(17 47)(18 42)(19 37)(20 44)(21 39)(22 46)(23 41)(24 48)(25 28 31 34)(26 29 32 35)(27 30 33 36)
(1 33 7 27)(2 28 8 34)(3 35 9 29)(4 30 10 36)(5 25 11 31)(6 32 12 26)(13 46 19 40)(14 41 20 47)(15 48 21 42)(16 43 22 37)(17 38 23 44)(18 45 24 39)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 40 10 37 7 46 4 43)(2 45 11 42 8 39 5 48)(3 38 12 47 9 44 6 41)(13 30 22 27 19 36 16 33)(14 35 23 32 20 29 17 26)(15 28 24 25 21 34 18 31)

G:=sub<Sym(48)| (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,43)(14,38)(15,45)(16,40)(17,47)(18,42)(19,37)(20,44)(21,39)(22,46)(23,41)(24,48)(25,28,31,34)(26,29,32,35)(27,30,33,36), (1,33,7,27)(2,28,8,34)(3,35,9,29)(4,30,10,36)(5,25,11,31)(6,32,12,26)(13,46,19,40)(14,41,20,47)(15,48,21,42)(16,43,22,37)(17,38,23,44)(18,45,24,39), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40,10,37,7,46,4,43)(2,45,11,42,8,39,5,48)(3,38,12,47,9,44,6,41)(13,30,22,27,19,36,16,33)(14,35,23,32,20,29,17,26)(15,28,24,25,21,34,18,31)>;

G:=Group( (1,10,7,4)(2,11,8,5)(3,12,9,6)(13,43)(14,38)(15,45)(16,40)(17,47)(18,42)(19,37)(20,44)(21,39)(22,46)(23,41)(24,48)(25,28,31,34)(26,29,32,35)(27,30,33,36), (1,33,7,27)(2,28,8,34)(3,35,9,29)(4,30,10,36)(5,25,11,31)(6,32,12,26)(13,46,19,40)(14,41,20,47)(15,48,21,42)(16,43,22,37)(17,38,23,44)(18,45,24,39), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40,10,37,7,46,4,43)(2,45,11,42,8,39,5,48)(3,38,12,47,9,44,6,41)(13,30,22,27,19,36,16,33)(14,35,23,32,20,29,17,26)(15,28,24,25,21,34,18,31) );

G=PermutationGroup([[(1,10,7,4),(2,11,8,5),(3,12,9,6),(13,43),(14,38),(15,45),(16,40),(17,47),(18,42),(19,37),(20,44),(21,39),(22,46),(23,41),(24,48),(25,28,31,34),(26,29,32,35),(27,30,33,36)], [(1,33,7,27),(2,28,8,34),(3,35,9,29),(4,30,10,36),(5,25,11,31),(6,32,12,26),(13,46,19,40),(14,41,20,47),(15,48,21,42),(16,43,22,37),(17,38,23,44),(18,45,24,39)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,40,10,37,7,46,4,43),(2,45,11,42,8,39,5,48),(3,38,12,47,9,44,6,41),(13,30,22,27,19,36,16,33),(14,35,23,32,20,29,17,26),(15,28,24,25,21,34,18,31)]])

Matrix representation of C42.Dic3 in GL4(𝔽73) generated by

46000
04600
004619
002727
,
727100
1100
0012
007272
,
3000
707000
00240
004949
,
0010
0001
46000
272700
G:=sub<GL(4,GF(73))| [46,0,0,0,0,46,0,0,0,0,46,27,0,0,19,27],[72,1,0,0,71,1,0,0,0,0,1,72,0,0,2,72],[3,70,0,0,0,70,0,0,0,0,24,49,0,0,0,49],[0,0,46,27,0,0,0,27,1,0,0,0,0,1,0,0] >;

C42.Dic3 in GAP, Magma, Sage, TeX

C_4^2.{\rm Dic}_3
% in TeX

G:=Group("C4^2.Dic3");
// GroupNames label

G:=SmallGroup(192,101);
// by ID

G=gap.SmallGroup(192,101);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,219,184,1571,570,297,136,1684,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=b^2,d^2=b^2*c^3,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1*b^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^5>;
// generators/relations

Export

Character table of C42.Dic3 in TeX

׿
×
𝔽